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ABSTRACT 
Experimental studies show that multimodal biometric systems for 
small-scale populations perform better than single-mode 
biometric systems. We examine if such techniques scale to larger 
populations, introduce a methodology to test the performance of 
such systems, and assess the feasibility of using commercial off-
the-shelf (COTS) products to construct deployable multimodal 
biometric systems. A key aspect of our approach is to leverage 
confidence level scores from preexisting single-mode data. An 
example presents a multimodal biometrics system analysis that 
explores various normalization and fusion techniques for face and 
fingerprint classifiers. This multimodal analysis uses a population 
of about 1000 subjects, a number ten-times larger than seen in any 
previously reported study. Experimental results combining face 
and fingerprint biometric classifiers reveal significant 
performance improvement over single-mode biometric systems. 

Categories and Subject Descriptors 
C.4 [Performance of Systems]: measurement techniques, 
performance attributes. 
General Terms 
Algorithms, Measurement, Performance, Design, 
Experimentation, Security, Human Factors, Standardization. 

Keywords 
Evaluation, Fusion, Multimodal Biometrics; Normalization; 
System Design; Testing Methodology; 

1. INTRODUCTION 
Single-mode biometric solutions have limitations in terms of 
accuracy, enrollment rates, and susceptibility to spoofing. A 
recent report [4] by the National Institute of Standards and 
Technology (NIST) to the United States Congress concluded that 
approximately two percent of the population does not have a 
legible fingerprint and therefore cannot be enrolled into a 
fingerprint biometrics system. The report recommends a system 
employing dual biometrics in a layered approach. Combining 
multiple sources of evidence improves performances, as 
demonstrated in several small-scale experimental studies 
performed in academia [1,2,3].  
The key to multimodal biometrics is the fusion (i.e., combination) 
of the various biometric mode data and, if necessary, the 
normalization of that data to achieve values in a common range. 
Fusion can occur at the feature extraction, match-score, or 
decision level [2]. Feature level fusion combines feature vectors 

at the representation level that essentially provides higher 
dimensional data points when comparing the matching score. 
Match-score level fusion combines the disjoint confidence scores. 
Decision level fusion combines accept or reject decisions of 
individual systems. A majority vote scheme can then be 
employed, for example, to make the final judgment [10]. Our 
approach addresses fusion at the match-score level. 
Limitations upon deployment of multimodal systems include lack 
of a common testing framework and the absence of tools to 
evaluate and build such systems. Core components of this work 
present (i) a verification testing methodology for multimodal 
biometric systems, (ii) an evaluation of normalization and fusion 
algorithms for a subject population ten-times larger than 
previously reported, and (iii) recommendations for designing 
multimodal biometric systems that can accommodate COTS 
products. 

2. TESTING FRAMEWORK 
We begin by introducing a methodology for testing multimodal 
biometric systems; the methodology provides a general 
framework for conducting normalization and fusion technique 
evaluations. The basis of this methodology is that fusion is 
applied after the individual biometric match-scores are 
determined. An advantage of fusion at this stage is that existing 
and proprietary biometric systems are not affected, allowing for a 
common middleware layer to handle the multimodal application 
but with a modicum of common information. Another advantage 
of using match (or confidence) scores is that data from prior 
evaluations of single-mode biometric systems can be reused. This 
avoids live testing or re-running individual biometric algorithms. 
One source of such data is the 2002 face recognition vendor test 
(FRVT 2002) [5].  
The following is an overview of our adoption and extension of a 
single-mode biometric testing methodology proposed by Phillips 
et al. [5, 6].  A biometric signature is any form of biometric 
identifying data (e.g., a still fingerprint image or template of that 
information). 

1. Assemble two sets of biometric signatures: a target and 
query set. The target set contains the set of signatures 
that are known to the system (i.e., the Biometric 
database). The query set contains signatures of subjects 
that are to be compared against the target set.  The 
intersection of these two sets contains the subjects that 
should be found in the database. For practical tests the 
intersection should not be null. Although the same 
subjects are in both sets, separate instances of their 
biometric signatures should be used.  
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2. For each pair of query and target signatures obtain a 
match-score and store in a matrix, called a similarity 
matrix, whose size is query set size by target set size. 
The match-score is a measure of how similar two  



biometric signatures are. The match-score could 
represent, for example, a similarity or distance score.  

3. Gallery and probe subsets can be extracted from the 
target/query similarity matrix, respectively, to perform 
“virtual” experiments on a subset of the population. A 
gallery is any arbitrary subset of the target set. A probe 
is any arbitrary subset of the query set. 

4. Repeat steps 1-3 for each biometric mode. 

5. Assemble and align the similarity matrices from step 2; 
this includes converting data to a common format, 
forming subsets to obtain matrices of the same size, and 
data mating to create real or virtual subjects. If the 
scores were produced by different sets of subjects, we 
rely upon the assumption that the individual modalities 
concerned are statistically independent of one another 
and could thus be assigned arbitrarily (though 
consistently) to form a set of mated virtual subjects for 
the purpose of testing. The result is a set of similarity 
matrices of equal size representing match-score data for 
mated subjects in a common format convenient for 
processing 

6. Normalize the assembled similarity matrices to a 
common number range. Since this is an optional step, 
the transformation could be null and the output is equal 
to the input. A decision tree based fusion algorithm is a 
case where normalization may not be necessary. 
Normalization can be any post-processing 
transformation of the score data, but care should be 
taken not to reduce the dimensionality of the data [9]. 

7. Fuse the set of normalized similarity matrices into a 
single fusion similarity matrix. A fusion function, f(x1, 
…xn), defines a mapping from n-space, where each 
biometric represents one of the n dimensions, into a 
single fused dimension. A threshold divides this range 
into an accept and reject part. Alternatively, decision 
level fusion defines a boundary that partitions the n-
space into two parts representing accept and reject 
space. Operationally, the threshold or boundary is 
derived from an estimate of the Receiver Operating 
Characteristic (ROC) curve developed in step 8. 

8. Performance statistics for verification are computed 
from the genuine and imposter scores. Genuine scores 
are those that result from comparing elements in the 
target and query sets of the same subject. Imposter 
scores are those resulting from comparisons of different 
subjects. Use each fusion score as a threshold and 
compute the false-accept rate (FAR) and false-reject 
rate (FRR) by selecting those imposter scores and 
genuine scores, respectively, on the wrong side of this 
threshold and divide by the total number of scores used 
in the test. A mapping table of the threshold values and 
the corresponding error rates (FAR and FRR) are 
stored. The complement of the FRR (1 – FRR) is the 
genuine accept-rate (GAR). The GAR and the FAR are 
plotted against each other to yield a ROC curve, a 
common system performance measure. In practice, one 
chooses a desired operational point on the ROC curve 

and uses the FAR of that point to determine the 
corresponding threshold from the mapping table. 

This framework allows a system designer to model hypothetical 
multimodal biometric systems that can vary the biometric 
indicator, matching algorithm, normalization and fusion 
techniques, and sample databases (e.g., the subject population or 
environmental conditions can be varied). Given this framework, 
systems can be built to optimally suit a particular application. 

3. EVALUATION  
We apply the principles laid out in the framework by examining 
two similarity matrices representing scores from a fingerprint and 
a face recognition system.  Steps 1 through 4 of our testing 
methodology were previously completed. We now proceed to 
apply steps 5 through 8. 

3.1 Databases 
The fingerprint scores were obtained from a subset of a 60,000 x 
60,000 similarity matrix previously generated by NIST using 
public domain fingerprint matching algorithms and 120,000 
fingerprint images.  The images were taken from 30,000 
individuals who each contributed a primary and a secondary 
image for both of their index fingers.  
 The primary images were assigned to the target set and the 
secondary images were assigned to the query set.  Because these 
sets are disjoint, all scores generated were for unique pairs of 
images, thus eliminating any concerns about “asymmetry” of the 
matching algorithm (note, the matcher used was in fact 
symmetric). 
 From this original matrix, we extracted a 1005 x 1005 sub-matrix 
into our common format containing only scores from comparing 
images of left index fingers for 1005 individuals. 
The face scores were obtained from a subset of a 3,323 x 3,816 
similarity matrix produced during prior evaluations [6] of an MIT 
developed face recognition algorithm (“MIT Standard, March 
1995”). The scores result from comparisons of various facial 
images contributed by 1201 individuals to the FERET Database 
[11]. From this original matrix we extracted a 1005 x 1005 sub-
matrix into our common format containing only scores obtained 
by comparing unique pairs of images from 1005 individuals. 
 We then arbitrarily, although consistently, assigned each of the 
1005 "virtual subjects" to a set of face and finger scores (under 
the assumption that face and finger scores are independent of one 
another). This completes step 5 of our testing methodology. 

Table 1.  Summary of Normalization Techniques. 

Note: We denote the classifier output score by s and normalized 
score by s’ 

Min-
Max    

s’ = (s - min) / (max-min) 

Z-
score   

s’ = (s - mean)/(standard deviation) 

MAD s’ = (s - median)/constant(median | s -  median|) 

Tanh  s’ = .5[ tanh ( .01(s - mean)/(standard deviation) ) +1] 



3.2 Normalization 
Normalization, step 6 of our testing methodology, is 
recommended for certain data fusion methods. Normalization 
addresses the problem of incomparable classifier output scores in 
different combination classification systems. Table 1 provides a 
summary of some well-known normalization techniques that we 
use in this study. 

3.3 Fusion 
We apply a number of well-known fusion techniques [7], shown 
in Table 2, which is step 7 of our testing methodology. The 
simple sum rule adds the scores of each classifier to calculate the 
fused score. The Minimum Score fusion method selects the score 
having the least value of the classifiers. Likewise, the Maximum 
Score fusion method selects the score having the greatest value of 
the classifiers. The genuine posterior probability, P(genuine | 

), represents the probability of a subject being genuine, 

given a score for a particular classifier ( s ).  The Sum of 

Probabilities, and Product of Probabilities fusion techniques 
compute the fused scores by adding or multiplying, respectively, 
these probabilities for all classifiers. 

si

i

 
Table 2. Summary of Fusion Techniques. 

 
For the probability fusion techniques, we follow the theoretical 
framework of Kittler et al. [7] that uses a training set of the first n 
(n = 100 in this study) subjects to estimate the population 

posterior probabilities of genuineness P(genuine | ) to combine 

these probabilities for a fused similarity score. We used the mean 
and variance of the genuine and imposter scores from this training 
set and assumed a normal distribution for their probability density 
function, p( s | genuine) and p( s | imposter), to evaluate 
P(genuine | S )= p(s | genuine) / [ p(s | genuine) + p(s | imposter) 
]. Using the actual density function, rather than assuming a 
normal distribution, may yield better results. Note for the sum of 
probabilities and product of probabilities fusion techniques the 

normalization step is not needed—normalization is implied in the 
algorithm. 

si

Figure 1. Simple Sum Rule with different Normalizations
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3.4 Experiments 
Performance statistics, step 8 of the testing methodology, 
computes the ROC curves for our study. Figure 1 shows a ROC 
curve for the simple sum fusion rule with various normalization 
techniques. Clearly the use of these fusion and normalization 
techniques enhances the performance significantly over the 
single-modal face or fingerprint classifiers. For example, at a 
FAR of 0.1% the simple sum fusion with the min-max 
normalization has a GAR of 94.9%, which is considerably better 
than that of face, 75.3%, and fingerprint, 83.0%. Also, using any 
of the normalization techniques in lieu of not normalizing the data 
proves beneficial. The simplest normalization technique, the min-
max, yields the best performance in this example. 

si  is the score from the ith-classifier, assuming N classifiers; 

Let P (genuine | ) and P (imposter | ) be the posteriori 

probability of being genuine or imposter 

si si
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Figure 2. Min-Max Normalization with different Fusions
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Figure 2 illustrates the results of Min-Max normalization for a 
spectrum of fusion methods. The simple sum fusion method 
yields the best performance over the range of FARs. Interestingly, 
the genuine-accept rate for sum and product probability rules falls 
off dramatically at a lower FAR. 
 
Tables 3 and 4 show the GAR for the spectrum of normalization 
and fusion techniques at FARs of 1% and 0.1% respectively. At 
1% FAR, the sum of probabilities fusion works the best. 
However, these results do not hold true at a FAR of 0.1%. The 
simple sum rule generally performs well over the range of 
normalization techniques. These results demonstrate the utility of 



using multimodal biometric systems for achieving better matching 
performance. They also indicate that the method chosen for fusion 
has a significant impact on the resulting performance. 
 
In operational biometric systems, application requirements drive 
the selection of tolerable error rates, and in both single-modal and 
multimodal biometric systems, implementers are forced to make a 
trade-off between usability and security.  Implementers produce 
ROC curves for their systems from their own test data based on 
these guidelines. Operators use these ROC curves to determine 
the FAR of the security level needed for their application. The 
mapping table, from step 8 of our testing methodology, is used to 
determine the threshold value corresponding to that FAR. This 
mapping is usually done via an implementer provided utility, 
which may need to use extrapolation to determine certain values. 
 
Table 3. Summary of Fusion Techniques, GAR at 1% FAR. 

 
Looking at the data from a slightly different perspective, we count 
the number of subjects who were rejected by either face or 
fingerprint, or by both classifiers, but accepted by fusion. Table 5 
summarizes the false-rejections for the various classifiers at a 
given FAR. Of the 1005 genuine subjects at a FAR of 1%, there 
were 4 cases where a subject was rejected for both the face and 
fingerprint indicator, but was accepted with the min-max 
normalization/simple sum fusion system. Likewise, at a FAR of 
0.1% there were 11 such cases. As expected, the acceptance rates 
are more dramatic when compared to those for the individual 
modalities. These results suggest that multimodal biometric 
systems can be deployed that will increase security while 
reducing the number of false rejections. 
 
Table 4.  Summary of Fusion Techniques, GAR at .1% FAR. 

 Fusion Techniques 
Normalization 

Techniques 
Simple 
Sum 

Max 
Score 

Min 
Score 

Sum of 
Prob. 

Product 
of Prob. 

Min-Max 94.9 % 77.9 % 83.0 % N/A N/A 
Z-Score 94.2 % 87.9 % 85.1 % N/A N/A 
Tanh 94.4 % 87.5 % 85.1 % N/A N/A 
MAD 90.7 % 83.2 % 84.3 % N/A N/A 
None (implied) 88.5 % 83.0 % 82.6 % 87.3 % 86.2 % 
 
Conversely, we also examine those subjects who were accepted 
by either face or fingerprint classifier but rejected by fusion. At a 
FAR of 1% 4 subjects passed the fingerprint system but failed 
fusion. There were no such cases for face. At 0.1% 20 subjects 
passed the fingerprint system but failed fusion. Likewise, 3 
subjects passed the face system but failed fusion. 
It is important to note that although our findings support the 
results from earlier small-scale studies, the results presented here 
are applicable only for the data in this study. No inferences can be 

drawn to predict performance of a system as we scale the subject 
population [8]. This emphasizes the need to conduct experiments 
on representative data sets for even larger populations. 

Table 5. False Rejections for 1005 subjects in the Unimodal 
and Multimodal Biometric Systems 

 False Rejections 
Classifier 0.1% FAR 1% FAR 

Face 248 124 
Fingerprint 183 112 
Simple Sum 51 13 
Both Face and Finger 39 8 
All Three 28 4 

 

4. SYSTEM DESIGN 
The advantage of fusion at the match-score level is that existing 
and proprietary single-mode biometric systems can easily be 
integrated into a multimodal biometric environment if some basic 
information is provided by these existing systems. The needed 
information does not expose any of the internal operations of 
these systems. The following is a list of preliminary 
recommendations for the information needed from existing 
systems that could hasten interoperability and plug-n-play in such 
an environment: 
 

 Fusion Techniques 

Normalization 
Techniques 

Simple 
Sum 

Max 
Score 

Min 
Score 

Sum of 
Prob. 

Prod. of 
Prob. 

Min-Max 98.7 % 90.2 % 87.7 % N/A N/A 
Z-Score 98.5 % 98.3 % 91.1 % N/A N/A 
Tanh 98.5 % 98.1 % 91.1 % N/A N/A 
MAD 96.9 % 93.4 % 91.1 % N/A N/A 
None (implied) 94.6 % 93.4 % 87.7 % 99.0 % 93.7 % 

 The match-score (confidence level), its range and 
distribution should be exposed in a common format. 

 A set of training data or distributions for sample test 
populations. 

Our long-term goal is to develop a middleware environment that 
would support multimodal biometric applications. Plug-n-play 
architectures can be built from individual single-mode biometric 
systems supporting the requirements stated above. As a first step 
towards achieving this goal we are constructing a prototype 
multimodal biometric system that combines face and fingerprint 
classifiers from two independent COTS products of different 
vendors, as shown in figure 3. This system is built at the 
application level and fuses match-score data provided by each of 
the vendor’s software development kits.  

5. SUMMARY AND FUTURE WORK 
We have established a framework capable of assessing the 
performance of multimodal biometric systems. We have 
demonstrated the utility of this methodology by examining 
relatively large face and fingerprint data sets over a spectrum of 
normalization and fusion techniques. The results of this study, 
which uses a population ten-times larger than previously reported, 
supports the results of smaller studies that show multimodal 
biometric systems out perform single-mode biometric systems. 
An additional advantage of fusion at this level is that existing and 
proprietary biometric systems do not need to be modified, 
allowing for a common middleware layer to handle the 
multimodal applications with a modicum of common information. 
Future work will investigate alternative normalization and fusion 
methods, while honing our proposed testing methodology. 
 
NIST, in its extensive single-mode biometrics testing, has 
concluded [4,8] that to accurately evaluate the performance of 
biometric systems, tests must be performed with data sets on the 
order of tens-of-thousands subjects and that no inferences be 



drawn from tests conducted on small subject populations to assess 
system scalability. Thus, future plans include expanding the test 
databases to attain these larger sizes. In addition, to assess the 
feasibility of such systems for large-scale deployments, we will 
perform these tests using COTS products. 
 

 
Figure 3. Prototype Multimodal Biometric System. 
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